Discovering speech phones using convolutive non-negative matrix factorisation with a sparseness constraint
نویسندگان
چکیده
Discovering a representation that allows auditory data to be parsimoniously represented is useful for many machine learning and signal processing tasks. Such a representation can be constructed by Non-negative Matrix Factorisation (NMF), a method for finding parts-based representations of non-negative data. Here, we present an extension to convolutive NMF that includes a sparseness constraint, where the resultant algorithm has multiplicative updates and utilises the beta divergence as its reconstruction objective. In combination with a spectral magnitude transform of speech, this method discovers auditory objects that resemble speech phones along with their associated sparse activation patterns. We use these in a supervised separation scheme for monophonic mixtures, finding improved separation performance in comparison to classic convolutive NMF.
منابع مشابه
Discovering Convolutive Speech Phones Using Sparseness and Non-negativity
Abstract Discovering a representation that allows auditory data to be parsimoniously represented is useful for many machine learning and signal processing tasks. Such a representation can be constructed by Non-negative Matrix Factorisation (NMF). Here, we present a convolutive NMF algorithm that includes a sparseness constraint on the activations and has multiplicative updates. In combination w...
متن کاملDiscovering Convolutive Speech Phones using Sparseness and Non-Negativity Constraints
Discovering a representation that allows auditory data to be parsimoniously represented is useful for many machine learning and signal processing tasks. Such a representation can be constructed by Nonnegative Matrix Factorisation (NMF), which is a method for finding parts-based representations of non-negative data. Here, we present an extension to convolutive NMF that includes a sparseness cons...
متن کاملConvolutive Non-negative Matrix Factorisation with Sparseness Constraint
Discovering a parsimonious representation that reflects the structure of audio is a requirement of many machine learning and signal processing methods. Such a representation can be constructed by Non-negative Matrix Factorisation (NMF), which is a method for finding parts-based representations of non-negative data. We present an extension to NMF that is convolutive and forces a sparseness const...
متن کاملSpeech Intelligibility Enhancement Using Convolutive Non-negative Matrix Factorization with Noise Prior
We propose a convolutive non-negative matrix factorization method to improve the intelligibility of speech signal in the context of adverse noise environment. The noise bases are prior learned with Non-negative Matrix Factorization (NMF) algorithm. A modified convolutive NMF with sparse constraint is then derived to extract speech bases from noisy speech. The divergence function is selected as ...
متن کاملBandwidth expansion of narrowband speech using non-negative matrix factorization
In this paper, we present a novel technique for the estimation of the high frequency components (4-8kHz) of speech signals from narrow-band (0-4 kHz) signals using convolutive Non-Negative Matrix Factorisation (NMF). The proposed technique utilizes a brief recording of simultaneous broad band and narrow band signals from a target speaker to learn a set of broad-band non-negative "bases" for the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 72 شماره
صفحات -
تاریخ انتشار 2008